++
The location and orientation of components of the central nervous system within the body are described with reference to three axes: the rostral-caudal, dorsal-ventral, and medial-lateral axes (Figure 15–2).
++
++
The spinal cord is the most caudal part of the central nervous system and in many respects the simplest part. It extends from the base of the skull to the first lumbar vertebra. The spinal cord receives sensory information from the skin, joints, and muscles of the trunk and limbs, and contains the motor neurons responsible for both voluntary and reflex movements. Along its length the spinal cord varies in size and shape, depending on whether the emerging motor nerves innervate the limbs or trunk; it is thicker at levels that innervate the arms and legs.
++
The spinal cord is divided into a core of central gray matter and surrounding white matter. The gray matter, which contains nerve cell bodies, is typically divided into dorsal and ventral horns (so-called because the gray matter appears H-shaped in transverse sections). The dorsal horn contains an orderly arrangement of sensory relay neurons that receive input from the periphery, whereas the ventral horn contains groups of motor neurons and interneurons that regulate motor neuronal firing patterns. The axons of motor neurons innervate specific muscles. The white matter is made up in part of rostral-caudal (longitudinal) ascending and descending tracts of myelinated axons. The ascending pathways carry sensory information to the brain, while the descending pathways carry motor commands and modulatory signals from the brain to the muscles.
++
The nerve fibers to and from the spinal cord are bundled in 31 spinal nerves, each of which has a sensory and a motor division. The sensory division (the dorsal root) carries information from muscles and skin into the spinal cord and terminates in the dorsal aspect of the cord. Different classes of axons within the dorsal roots convey pain, temperature, touch, and visceral sensory information. The motor division (the ventral root) emerges from the ventral aspect of the cord and comprises the axons of motor neurons that innervate muscles. Ventral roots from certain levels of the spinal cord also include sympathetic and parasympathetic axons. The motor neurons of the spinal cord comprise the "final common pathway" through which all higher brain levels controlling motor activity must act.
++
The brain, which lies rostral to the spinal cord, is composed of six regions: the medulla, pons, midbrain, cerebellum, diencephalon, and cerebral hemispheres or telencephalon (Figure 15–3). Each of these divisions is found in both hemispheres of the brain with slight bilateral differences. Each of the six divisions is further subdivided into several anatomically and functionally distinct areas.
++
++
The three divisions of the central nervous system immediately rostral to the spinal cord—the medulla, pons, and midbrain—are collectively termed the brain stem.
++
The medulla, the most caudal portion of the brain stem, is a direct extension of the spinal cord and resembles the spinal cord both in organization and function. Neuronal groups in the medulla participate in regulating blood pressure and respiration. The medulla also contains neuronal groups that are early components of pathways that mediate taste, hearing, and maintenance of balance as well as the control of neck and facial muscles.
++
The pons lies rostral to the medulla and protrudes from the ventral surface of the brain stem. The ventral portion of the pons contains the pontine nuclei, groups of neurons that relay information about movement and sensation from the cerebral cortex to the cerebellum. The dorsal portion of the pons contains structures involved in respiration, taste, and sleep.
++
The midbrain, the smallest part of the brain stem, lies rostral to the pons. Nuclei in the midbrain provide important linkages between components of the motor system, particularly the cerebellum, basal ganglia, and cerebral hemispheres. For example, the substantia nigra provides important input to a portion of the basal ganglia that regulates voluntary movements. The substantia nigra is the focus of intense interest as damage to its dopaminergic neurons is responsible for the pronounced motor disturbances that are characteristic of Parkinson disease (see Chapter 43). The midbrain also contains components of the auditory and visual systems. Finally, several regions of the midbrain give rise to pathways that are connected to the extraocular muscles that control eye movements.
++
The brain stem has five distinct functions. First, just as the spinal cord mediates sensation and motor control of the trunk and limbs, the brain stem mediates sensation and motor control of the head, neck, and face. The sensory input and motor output of the brain stem is carried by 12 cranial nerves that are functionally analogous to the 31 spinal nerves. Second, the brain stem is the site of entry for information from several specialized senses, such as hearing, balance, and taste. Third, specialized neurons in the brain stem mediate parasympathetic reflexes, such as decreases in cardiac output and blood pressure, increased peristalsis of the gut, and constriction of the pupils. Fourth, the brain stem contains ascending and descending pathways that carry sensory and motor information to other divisions of the central nervous system. Fifth, a relatively diffuse network of neurons distributed throughout the core of the brain stem, known as the reticular formation, receives a summary of much of the incoming sensory information and is important in regulating alertness and arousal.
++
The cerebellum lies over the pons and is divided into several lobes by distinct fissures. The cerebellum is important for maintaining posture and coordinating head, eye, and arm movements, and is also involved in minute regulation of motor output and learning motor skills. Until recently, the cerebellum was considered a purely motor structure, but new anatomical information about its interconnections with the cerebral cortex and functional imaging studies have shown that it is also involved in language and other cognitive functions. The cerebellum contains far more neurons than any other single subdivision of the brain, including the cerebral hemispheres. Its internal circuitry, however, is well understood because relatively few types of neurons are involved. The cerebellum receives information about somatic sensation from the spinal cord, information about balance from the vestibular organs of the inner ear, and motor and sensory information from various areas of the cerebral cortex via the pontine nuclei.
++
The diencephalon contains two major subdivisions: the thalamus and hypothalamus. The thalamus is an essential link in the pathway of sensory information from the periphery (other than olfactory receptors in the nose) to sensory regions of the cerebral hemispheres. It once was thought to act only as a relay station for sensory information traveling to the neocortex, but now it is clear that it also determines which sensory information reaches the neocortex. The thalamus also interconnects the cerebellum and basal ganglia with regions of the cerebral cortex concerned with movement and cognition. Like the reticular formation, the diencephalon also has regions that are thought to influence levels of attention and consciousness.
++
The hypothalamus lies ventral to the thalamus and regulates homeostasis and several reproductive behaviors. For example, it plays an important role in somatic growth, eating, drinking, and maternal behavior by regulating the hormonal secretions of the pituitary gland. The hypothalamus also influences behavior through its extensive afferent and efferent connections with practically every region of the central nervous system. It is an essential component of the motivational systems of the brain, initiating and maintaining behaviors the organism finds aversive or rewarding. Finally, one group of neurons in the hypothalamus, the suprachiasmatic nucleus, regulates circadian rhythms, cyclical behaviors that are entrained to the daily light–dark cycle.
++
The cerebral hemispheres are the largest part of the human brain. They consist of the cerebral cortex, the underlying white matter, and three deep-lying structures: the basal ganglia, amygdala, and hippocampal formation. The cerebral hemispheres have perceptual, motor, and cognitive functions, including memory and emotion. The two hemispheres are interconnected by the corpus callosum, which is visible on the medial surface of the hemispheres. The corpus callosum is the largest of the commissures (large bundles of axons that mainly link similar regions of the left and right sides of the brain). The amygdala is concerned with the expression of emotion, the hippocampus with memory formation, and the basal ganglia with the control of movement and aspects of motor learning.
++
While the spinal cord, brain stem, and diencephalon mediate many life-sustaining functions, it is the cerebral cortex—the thin outer layer of the cerebral hemispheres—that is responsible for much of the planning and execution of actions in everyday life. The cerebral cortex is divided into four major lobes—frontal, parietal, temporal, and occipital—named after the overlying cranial bones (Figure 15–4). Each lobe includes many distinct functional subregions. The temporal lobe, for example, has distinct regions with auditory, visual, or memory functions.
++
++
Two additional regions of the cerebral cortex are the cingulate cortex, which surrounds the dorsal surface of the corpus callosum and is involved in the regulation of emotion and cognition, and the insular cortex (insula), which is not visible on the surface owing to the overgrowth of the frontal, parietal, and temporal lobes (Figure 15–5) and is concerned with emotion and the regulation of homeostasis. The overhanging portion of the cerebral cortex that buries the insula within the lateral sulcus is called the operculum.
++
++
Although the cerebral cortex on both sides of the brain is generally similar, some areas of cortex on the two sides are functionally distinct. In right-handed people, for example, portions of the left cerebral cortex are specialized for language, whereas the right side of the brain is more related to visuospatial information processing.
++
In the mid-19th century Pierre Paul Broca first called attention to portions of the frontal, parietal, and temporal lobes that encircle the fluid-filled ventricles of the brain, forming a continuous region at the border of the cerebral cortex. He named this region the limbic lobe (Latin limbus, border). The limbic lobe is no longer considered one of the major subdivisions of the cerebral cortex. However, the cingulate gyrus, which surrounds the corpus callosum and occupies much of Broca's limbic lobe (Figure 15–4), is a separate division of the neocortex, much like the insular cortex.
++
Distinct functional components of the neural system are connected to each other via discrete pathways, that is, tracts of bundled axons from one discrete population of neurons that terminate in another discrete population. Some of these pathways are very large and can be seen with the unaided eye in the gross brain. The pyramidal tracts, for example, project conspicuously from the cerebral cortex to the spinal cord. Most pathways are not nearly as prominent but can be demonstrated with neuroanatomical tracing techniques (see Box 4–2).