Skip to Main Content

We have a new app!

Take the Access library with you wherever you go—easy access to books, videos, images, podcasts, personalized features, and more.

Download the Access App here: iOS and Android


Infections with helminths, or parasitic worms, affect more than two billion people worldwide. In regions of rural poverty in the tropics, where prevalence is greatest, simultaneous infection with more than one type of helminth is common. The relative incidence of common helminthic infections in humans worldwide is illustrated in Figure 51–1.

Figure 51–1.

Relative incidence of helminth infections worldwide.

Worms pathogenic for humans are Metazoa and can be classified into roundworms (nematodes) and two types of flatworms, flukes (trematodes) and tapeworms (cestodes). These biologically diverse eukaryotes vary with respect to life cycle, bodily structure, development, physiology, localization within the host, and susceptibility to chemotherapy. Immature forms invade humans via the skin or GI tract and evolve into well-differentiated adult worms with characteristic tissue distributions. With few exceptions, such as Strongyloides and Echinococcus, these organisms cannot complete their life cycle and replicate within the human host to produce mature offspring. Therefore, the extent of exposure to these parasites dictates the number of parasites infecting the host, a characteristic recognized as infection intensity, which itself determines the morbidity caused by infection. Secondly, any reduction in the number of adult organisms by chemotherapy is sustained unless reinfection occurs. The burden of parasitic helminths within an infected population is not uniformly distributed, and it typically displays a negative binomial distribution whereby relatively few persons carry the heaviest parasite burden, resulting in increased morbidity in these individuals who also contribute disproportionately to transmission.

Anthelmintics are drugs that act either locally within the gut lumen to cause expulsion of worms from the GI tract, or systemically against helminths residing outside the GI tract. Safe and effective broad-spectrum anthelmintics, initially developed for veterinary use, are currently available for use in humans. However, therapy for many tissue-dwelling helminths, such as filarial parasites, is not fully effective. For many reasons, including their long-lived and relatively complex life cycles, acquired resistance to anthelmintics in humans has yet to become a major clinical problem. However, with the increasing deployment of mass drug therapy, and considering the veterinary experience with resistance, the potential for drug resistance among helminths in humans requires monitoring.

Primarily as a result of stepped-up advocacy by the World Health Organization (WHO), the World Bank, the Global Network for Neglected Tropical Diseases, and smaller nongovernmental organizations such as the London-based Partnership for Child Development (PCD), there is increasing appreciation for the impact of helminth infections on the health and education of school-aged children. These organizations have promoted the periodic and frequent use of anthelmintic drugs in schools as a means to control morbidity caused by soil-transmitted helminths and schistosomes in developing countries. In addition, interest has grown in eliminating arthropod-borne helminth infections by interrupting their transmission through the widespread use of anthelmintics. Today, control programs employing anthelmintics rank among the world's largest health efforts, and hundreds ...

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.