++
Echinococcosis is an infection caused in humans by the larval stage of the Echinococcus granulosus complex, E. multilocularis, or E. vogeli. E. granulosus complex parasites produce cystic hydatid disease, with unilocular cystic lesions. These infections are prevalent in most areas where livestock is raised in association with dogs. Molecular evidence suggests that E. granulosus strains may actually belong to more than one species; specifically, strains from sheep, cattle, pigs, horses, and camels probably represent separate species. These parasites are found on all continents, with areas of high prevalence in China, central Asia, the Middle East, the Mediterranean region, eastern Africa, and parts of South America. E. multilocularis, which causes multilocular alveolar lesions that are locally invasive, is found in Alpine, sub-Arctic, or Arctic regions, including Canada, the United States, and central and northern Europe; China; and central Asia. E. vogeli causes polycystic hydatid disease and is found only in Central and South America.
++
Like other cestodes, echinococcal species have both intermediate and definitive hosts. The definitive hosts are canines that pass eggs in their feces. After the ingestion of eggs, cysts develop in the intermediate hosts—sheep, cattle, humans, goats, camels, and horses for the E. granulosus complex and mice and other rodents for E. multilocularis. When a dog (E. granulosus) or fox (E. multilocularis) ingests infected meat containing cysts, the life cycle is completed.
++
The small (5-mm-long) adult E. granulosus complex worms, which live for 5–20 months in the jejunum of dogs, have only three proglottids: one immature, one mature, and one gravid. The gravid segment splits to release eggs that are morphologically similar to Taenia eggs and are extremely hardy. After humans ingest the eggs, embryos escape from the eggs, penetrate the intestinal mucosa, enter the portal circulation, and are carried to various organs, most commonly the liver and lungs. Larvae develop into fluid-filled unilocular hydatid cysts that consist of an external membrane and an inner germinal layer. Daughter cysts develop from the inner aspect of the germinal layer, as do germinating cystic structures called brood capsules. New larvae, called protoscolices, develop in large numbers within the brood capsule. The cysts expand slowly over a period of years.
++
The life cycle of E. multilocularis is similar except that wild canines, such as foxes, serve as the definitive hosts and small rodents serve as the intermediate hosts. The larval form of E. multilocularis, however, is quite different in that it remains in the proliferative phase, the parasite is always multilocular, and vesicles without brood capsule or protoscolices progressively invade the host tissue by peripheral extension of processes from the germinal layer.
+++
Clinical manifestations
++
Slowly enlarging echinococcal cysts generally remain asymptomatic until their expanding size or their space-occupying effect in an involved organ elicits symptoms. The liver and the lungs are the most common sites of these cysts. The liver is involved in about two-thirds of E. granulosus infections and in nearly all E. multilocularis infections. Because a period of years elapses before cysts enlarge sufficiently to cause symptoms, they may be discovered incidentally on a routine x-ray or ultrasound study.
++
Patients with hepatic echinococcosis who are symptomatic most often present with abdominal pain or a palpable mass in the right upper quadrant. Compression of a bile duct or leakage of cyst fluid into the biliary tree may mimic recurrent cholelithiasis, and biliary obstruction can result in jaundice. Rupture of or episodic leakage from a hydatid cyst may produce fever, pruritus, urticaria, eosinophilia, or anaphylaxis. Pulmonary hydatid cysts may rupture into the bronchial tree or pleural cavity and produce cough, salty phlegm, dyspnea, chest pain, or hemoptysis. Rupture of hydatid cysts, which can occur spontaneously or at surgery, may lead to multifocal dissemination of protoscolices, which can form additional cysts. Other presentations are due to the involvement of bone (invasion of the medullary cavity with slow bone erosion producing pathologic fractures), the CNS (space-occupying lesions), the heart (conduction defects, pericarditis), and the pelvis (pelvic mass).
++
The larval forms of E. multilocularis characteristically present as a slowly growing hepatic tumor, with progressive destruction of the liver and extension into vital structures. Patients commonly report upper-quadrant and epigastric pain. Liver enlargement and obstructive jaundice may be apparent. The lesions may infiltrate adjoining organs (e.g., diaphragm, kidneys, or lungs) or may metastasize to the spleen, lungs, or brain.
++
Radiographic and related imaging studies are important in detecting and evaluating echinococcal cysts. Plain x-rays will define pulmonary cysts of E. granulosus—usually as rounded masses of uniform density—but may miss cysts in other organs unless there is cyst wall calcification (as occurs in the liver). MRI, CT, and ultrasound reveal well-defined cysts with thick or thin walls. When older cysts contain a layer of hydatid sand that is rich in accumulated protoscolices, these imaging methods may detect this fluid layer of different density. However, the most pathognomonic finding, if demonstrable, is that of daughter cysts within the larger cyst. This finding, like eggshell or mural calcification on CT, is indicative of E. granulosus infection and helps to distinguish the cyst from carcinomas, bacterial or amebic liver abscesses, or hemangiomas. In contrast, ultrasound or CT of alveolar hydatid cysts reveals indistinct solid masses with central necrosis and plaquelike calcifications.
++
A specific diagnosis of E. granulosus infection can be made by the examination of aspirated fluids for protoscolices or hooklets, but diagnostic aspiration is not usually recommended because of the risk of fluid leakage resulting in either dissemination of infection or anaphylactic reactions. Serodiagnostic assays can be useful, although a negative test does not exclude the diagnosis of echinococcosis. Cysts in the liver elicit positive antibody responses in ~90% of cases, whereas up to 50% of individuals with cysts in the lungs are seronegative. Detection of antibody to specific echinococcal antigens by immunoblotting has the highest degree of specificity.
++
TREATMENT Echinococcosis
Therapy for cystic echinococcosis is based on considerations of the size, location, and manifestations of cysts and the overall health of the patient. Surgery has traditionally been the principal definitive method of treatment. Currently, ultrasound staging is recommended for E. granulosus infections (Fig. 135-2). Small CL, CE1, and CE3 lesions may respond to chemotherapy with albendazole. For CE1 lesions and uncomplicated CE3 lesions, PAIR (percutaneous aspiration, infusion of scolicidal agents, and reaspiration) is now recommended instead of surgery. PAIR is contraindicated for superficially located cysts (because of the risk of rupture), for cysts with multiple thick internal septal divisions (honeycombing pattern), and for cysts communicating with the biliary tree. For prophylaxis of secondary peritoneal echinococcosis due to inadvertent spillage of fluid during PAIR, the administration of albendazole (15 mg/kg daily in two divided doses) should be initiated at least 2 days before the procedure and continued for at least 4 weeks afterward. Ultrasound- or CT-guided aspiration allows confirmation of the diagnosis by demonstration of protoscolices in the aspirate. After aspiration, contrast material should be injected to detect occult communications with the biliary tract. Alternatively, the fluid should be checked for bile staining visually and by dipstick. If no bile is found and no communication is visualized, the contrast material is reaspirated, with subsequent infusion of scolicidal agents (usually 95% ethanol; alternatively, hypertonic saline). This approach, when implemented by a skilled practitioner, yields rates of cure and relapse equivalent to those following surgery, with less perioperative morbidity and shorter hospitalization. In experienced hands, some CE2 lesions can be treated by aspiration with a trocar. Daughter cysts within the primary cyst may need to be punctured separately, and catheter drainage may be required.
Surgery remains the treatment of choice for complicated E. granulosus cysts (e.g., those communicating with the biliary tract), for most thoracic and intracranial cysts, and for areas where PAIR is not possible. For E. granulosus of the liver, the preferred surgical approach is pericystectomy, in which the entire cyst and the surrounding fibrous tissue are removed. The risks posed by leakage of fluid during surgery or PAIR include anaphylaxis and dissemination of infectious protoscolices. The latter complication has been minimized by careful attention to the prevention of spillage of the cyst and by soaking of the drapes with hypertonic saline. Infusion of scolicidal agents is no longer recommended because of problems with hypernatremia, intoxication, or sclerosing cholangitis. Albendazole, which is active against Echinococcus, should be administered adjunctively, beginning several days before resection of the liver and continuing for several weeks for E. granulosus. Praziquantel (50 mg/kg daily for 2 weeks) may hasten the death of the protoscolices. Medical therapy with albendazole alone for 12 weeks to 6 months results in cure in ~30% of cases and in improvement in another 50%. In many instances of treatment failure, E. granulosus infections are subsequently treated successfully with PAIR or additional courses of medical therapy. Response to treatment is best assessed by serial imaging studies, with attention to cyst size and consistency. Some cysts may not demonstrate complete radiologic resolution even though no viable protoscolices are present. Some of these cysts with partial radiologic resolution (e.g., CE4 or CE5) can be managed with observation only.
Surgical resection remains the treatment of choice for E. multilocularis infection. Complete removal of the parasite continues to offer the best chance for cure. Ongoing therapy with albendazole for at least 2 years after presumptively curative surgery is recommended. Positron emission tomography can be used to follow disease activity. Most cases are diagnosed at a stage at which complete resection is not possible; in these cases, albendazole treatment should be continued indefinitely, with careful monitoring. In some cases, liver transplantation has been used because of the size of the necessary liver resection. However, continuous immunosuppression favors the proliferation of E. multilocularis larvae and reinfection of the transplant. Thus, indefinite treatment with albendazole is required.
++
++
In endemic areas, echinococcosis can be prevented by administering praziquantel to infected dogs, by denying dogs access to infected animals, or by vaccinating sheep. Limitation of the number of stray dogs is helpful in reducing the prevalence of infection among humans. In Europe, E. multilocularis infection has been associated with gardening; gloves should be used when working with soil.