+
Aiso
S, Yamazaki
K, Umeda
Y
et al Pulmonary toxicity of intratracheally instilled carbon nanotubes in male Fischer 344 rats. Ind Health. 2011;48(6):783–795.
+
Akhavan
O, Ghaderi
E Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–5736.
+
Albrecht
C, Borm
PJ, Unfried
K Signal transduction pathways relevant for neoplastic effects of fibrous and non-fibrous particles. Mutat Res. 2004;553:23–35.
+
Allen
BL, Kotchey
GP, Chen
Y
et al Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc. 2009;131:17194–17205.
+
Allen
BL, Kichambare
PD, Gou
P
et al Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 2008;8:3899–3903.
+
Asgharian
B, Miller
FJ, Subramaniam
RP Dosimetry software to predict particle deposition in humans and rats. CIIT Activities. 1999;19(3):1–6.
+
Asharani
PV, Lian
Wu Y, Gong
Z, Valiyaveettil
S Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008.
+
Bainbridge
W Public attitudes towards nanotechnology. J Nanopart Res. 2002;4:461–470.
+
Balashazy
I, Hofmann
W, Helstracher
T Local particle deposition patterns may play a key role in the development of lung cancer. J Appl Physiol. 2003;94:1719–1725.
+
Balashazy
IW, Hofmann
W, Farkas
F, Madas
BG Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli. Inhal Toxicol. 2008;20(6):611–621.
+
Ballou
B, Lagerholm
BC, Ernst
LA, Bruchez
MP, Waggoner
AS Noninvasive imagaing of quantum dots in mice. Bioconjugate Chem. 2004;15:79–86.
+
Barrios
FA, Gonzalez
L, Favila
R
et al Olfaction and neurodegeneration in HD. Neuroreport. 18:73 (2007).
+
Bilberg
K, Hovgaard
MB, Besenbacher
F, Baatrup
E In vivo toxicity of silver nanoparticles and silver ions in Zebrafish (Danio rerio). J Toxicol. 2012;2012:293784.
+
Baun
A, Sørensen
SN, Rasmussen
RF, Hartmann
NB, Koch
CB Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquat Toxicol. 2008;86(3):379–387.
+
Bernstein
D, Castranova
V, Donaldson
K
et al Testing of fibrous particles: short-term assays and strategies. Inhalation Toxicology. 2005;17:497–537.
+
Bianco
A, Kostarelos
K, Prato
M Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb). 2011;47:10182–10188.
+
Bilberg
K, Malte
H, Wang
T, Baatrup
E Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol. 2010;96(2):159–165.
+
Biswas
R, Bunderson-Schelvan
M, Holian
A Potential role of the inflammasome-derived inflammatory cytokines in pulmonary fibrosis. Pulm Med. 2011;2011:105707.
+
Blinova
I, Ivask
A, Heinlaan
M, Mortimer
M, Kahru
A Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut. 2010;158(1):41–47.
+
Boczkowski
J, Hoet
P What’s new in nanotoxicology? Implications for public healthfrom a brief review of the 2008 literature. Nanotoxicology. 2009.
+
Bodian
D, Howe
HA Experimental studies on intraneural spread of poliomyelitis virus. Bordley JI, (ed). Bulletin of the Johns Hopkins Hospital. Baltimore, The Johns Hopkins Press; 1941:LXVIII248–267.
+
Borm
P J A, Robbins
D, Haubold
S
et al The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3(11).
+
Boya
P, Kroemer
G Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27:6434–6451.
+
Brausch
KA, Anderson
TA, Smith
PN, Maul
JD The effect of fullerenes and functionalized fullerenes on Daphnia magna phototaxis and swimming behavior. Environ Toxicol Chem. 2011;30(4):878–884.
+
Brodie
M, Elvidge
AR The portal of entry and transmission of the virus of poliomyelitis. Science. 1934;79(2045):235–236.
+
Brunauer
S, Emmett
PH, Teller
E Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319.
+
Calderon-Garciduenas
L, Engle
R, Mora-Tiscareno
A
et al Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn. 2011;77:345–355.
+
Casey
A, Herzog
E, Davoren
M, Lyng
FM, Byrne
HJ, Chambers
G Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon. 2007;45:1425–1432.
+
Casey
A, Herzog
E, Lyng
FM, Byrne
HJ, Chambers
G, Davoren
M Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett. 2008;179:78–84.
+
Cassee
FR, van Balen
EC, Singh
C
et al Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol. 2011;41:213–229.
+
Cederval
T, Lynch
I, Foy
M
et al Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed. 2007b;46:5754–5756.
+
Cedervall
T, Lynch
I, Lindman
S
et al Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007a;104:2050–2055.
+
Chen
J, Dong
X, Xin
Y, Zhao
M Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat Toxicol. 2011;101(3–4):493–499.
+
Chen
M, von Mikecz
A Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res. 2005;305:51–62.
+
Chithrani
DB Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol. 2010;27:299–311.
+
Choi
HS, Liu
W, Misra
P
et al Renal clearance of quantum dots. Nature Biotechnology. 2007;25(10):1165–1170.
+
Chou
LY, Ming
K, Chan
WC Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 2011;40:233–245.
+
Chu
M, Wu
Q, Yang
H
et al Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small. 2010;6(5):670–678.
+
Chung
H, Son
Y, Yoon
TK, Kim
S, Kim
W The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf. 2011;74(4):569–575.
+
Clarkson
TW, Friberg
L, Nordberg
GF, Sager
PR, eds. Biological Monitoring of Toxic Metals. Plenum Press;1988:686.
+
Cobb
MD, Macoubrie
J Public perceptions about nanotechnology: risks, benefits and trust. J Nanoparticle Res. 2004;6(4):395–405.
+
Cole
AJ, Yang
VC, David
AE Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011;29:323–332.
+
Colvin
VL The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003;21:1166–1170.
+
Cone
RA Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61:75–85.
+
Costa
M, Davidson
TL, Chen
H
et al Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res. 2005;592:79–88.
+
Czerniawska
A Experimental investigations on the penetration of 198Au from nasal mucous membrane into cerebrospinal fluid. Acta Otolaryng. 1970;70:58–61.
+
de Bruijne, Ebersviller
S, Sexton
KG
et al Design and testing of Electrostatic Aerosol in Vitro Exposure System (EAVES): an alternative exposure system for particles. Inhal Toxicol. 2009;21(2):91–101.
+
De Jong
WH, Borm
PJ Drug delivery and nanoparticles:applications and hazards. Int J Nanomed. 2008;3:133–149.
+
De Lorenzo
A The olfactory neuron and the blood-brain barrier. In: Taste and smell in vertebrates. Wolstenholme G, Knight J, eds. London: J. & A. Churchill; 1970:151–176.
+
De Nicola
M, Gattia
D, Bellucci
S
et al Effect of different carbon nanotubes on cell viability and proliferation. J Phys Condens Matter. 2007;19(39):395013.
+
Doak
SH, Griffiths
SM, Manshian
B
et al Confounding experimental considerations in nanogenotoxicology. Mutagenesis. 2009;24:285–293.
+
Donaldson
K, Aitken
R, Tran
L
et al Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92:5–22.
+
Donaldson
K, Beswick
PH, Gilmour
PS Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett. 1996;88(1–3):293–298.
+
Donaldson
K, Murphy
FA, Duffin
R, Poland
CA Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7(1):5.
+
Donaldson
KP, Borm
PJ, Castranova
V, Gulumian
M The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. Part Fibre Toxicol. 2009;6:13.
+
Donaldson
K, Stone
V, Tran
CL, Kreyling
W Occup Environ Med. 2004;61:727–728.
+
Dostert
C, Petrilli
V, Van Bruggen
R, Steele
C, Mossman
BT, Tschopp
J Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320:674–677.
+
Doty
RL The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol. 2008;63:7.
+
Drinker
K, Drinker
PRM Metal fume fever: V. results of the inhalation by animals of zinc and magnesium oxide fumes. J Ind Hyg. 1928;10:56–71.
+
Drinker
P, Finn
JL, Thomson
RM Metal fume fever II: resistance acquired by inhalation of zinc oxide on two successive days. J Ind Hyg. 1927a;9:98–105.
+
Drinker
P, Thomson
RM, Finn
JL Metal fume fever IV: threshold doses of zinc oxide preventive measures and the chronic effects of repeated exposures. J Ind Hyg. 1927b;9:331–345.
+
Driscoll
K, Costa
DL, Hatch
G
et al Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000;55:24–35.
+
Duncan
R Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol. 2011;22:492–501.
+
Dutta
D, Sundaram
SK, Teeguarden
JG
et al Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci. 2007;100(1):303–315.
+
Dvir
T, Timko
BP, Kohane
DS, Langer
R Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6:13–22.
+
Edgington
AJ, Roberts
AP, Taylor
LM
et al The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem. 2010;29(11):2511–2518.
+
Elder
A, Gelein
R, Silva
V
et al Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–1178.
+
Elliott
D, Zhang
W Field assessment of nanoparticles for groundwater treatment. Environ Sci Technol. 2001;35:4922–4926.
+
European Commission. Commission Recommendation of.… on the definition of the term “nanomaterial”. Brussels: European Commission; 2011.
+
Fabrega
J, Luoma
SN, Tyler
CR, Galloway
TS, Lead
JR; (EU), E.C. Commission Recommendation on the definition of nanomaterial. Official J European Union. 2011/696/EU. 2011 (adopted). Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 2011;37(2):517–531.
+
Fissan
H Nachhaltige nanotechnologie. In: Nordrhein-Westfälische Akademie der Wissenschaften. Germany, Herstellung: Ferdinand Schöningh, Paderborn; 2008; ISBN: 978-3-506-76565-9.
+
Food and Agriculture Organization of the United Nations/World Health Organization. FAO/WHO Expert Meeting on the Application of Nanotechnologies in the Food and Agriculture Sectors: Potential Food Safety Implications. Meeting Report. Rome; 2009:104.
+
Fawcett
TW, Sylvester
SL, Sarge
KD, Morimoto
RI, Holbrook
NJ Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J Biol Chem. 1994;269(51):32272–32278.
+
Feng
L, Liu
Z Graphene in biomedicine: opportunities and challenges. Nanomedicine (Lond). 2011;6:317–324.
+
Fenoglio
I, Fubini
B, Ghibaudi
EM, Turci
F Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev. 2011;63:1186–1209.
+
Fenoglio
I, Tomatis
M, Lison
D
et al Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med. 2006;40:1227–1233.
+
Feynman
R There’s Plenty of Room at the Bottom. Classic talk given on 12/29/59 at the American Physical Society at Caltech. First published in Caltech Engineering and Science, Volume 23:5 , February 1960, pp 22–36.
+
Flahaut
E, Durrieu
MC, Remy-Zolghadri
M, Bareille
R, Baquey
CH Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon. 2006;44(6):1093–1099.
+
Fortin
JP, Wilhelm
C, Christin
JS Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129:2628–2635.
+
Fubini
B, Ghiazza
M, Fenoglio
I Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology. 2010;4(4):347–363.
+
García
A, Delgado
L, Torà
JA
et al Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater. 2012;199–200:64–72.
+
Gao
J, Youn
S, Hovsepyan
A
et al Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol. 2009;43(9):3322–3328.
+
Geiser
M, Casaulta
M, Kupferschmid
B, Schulz
H, Kreyling
W The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol. 2008;38:371–376.
+
Geiser
M, Kreyling
WG Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010;7:2.
+
Geiser
M, Rothen-Rutishauser
B, Kapp
N
et al Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005;113:1555–1560.
+
George
S, Xia
T, Rallo
R
et al Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano. 2011;5(3):1805–1817.
+
Gottschalk
F, Sonderer
T, Scholz
RW, Nowack
B Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol. 2009;43(24):9216–9222.
+
Gottschalk
F, Sonderer
T, Scholz
RW, Nowack
B Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem. 2010;29(5):1036–1048.
+
Griffitt
RJ, Weil
R, Hyndman
KA
et al Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol. 2007;41(23):8178–8186.
+
Guo
L, Liu
X, Vaslet
C, Hurt
RH, Kane
AB Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater. 2007;19:3472–3478.
+
Guo
L, Von Dem Bussche
A, Buechner
M, Yan
A, Kane
AB, Hurt
RH Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small. 2008;4:721–727.
+
Hallock
MF, Greenlay
P, DiBerardinis
L, Kallin
D Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. J Chem Health Saf. 2009;16:16–23.
+
Hamilton
RF, Wu
N, Porter
D, Buford
M, Wolfarth
M, Holian
A Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6:35.
+
Han
GH, Andrews
R, Gairola
CG Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal Toxicol. 2010;22:340–347.
+
Han
X, Gelein
R, Corson
N Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology. 2011;287:99–104.
+
Haniu
H, Saito
N, Matsuda
Y
et al Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological responses. Intl J Nanomed. 2011;6:3295–3307.
+
Henry
TB, Menn
FM, Fleming
JT, Wilgus
J, Compton
RN, Sayler
GS Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect. 2007;115(7):1059–1065.
+
Hinderliter
PM, Minard
KR, Orr
G, Chrisler
WB
et al ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 2010;7:36.
+
Hinds
WC Time for number concentration to halve and particle size to double by simple monodisperse coagulation. In: Aerosol Technology. John-Wiley, New York; 1982:235–239.
+
Hirano
S, Fujitani
Y, Furuyama
A, Kanno
S Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2010;249(1):8–15.
+
Hirano
S, Kanno
S, Furuyama
A Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol. 2008;232(2):244–251.
+
Hoet
PHM, Bruske-Hohlfeld
I, Salata
OV Nanoparticles - known and unknown health risks. J Nanobiotechnol. 2004;2(12):12–27.
+
Holbrook
RD, Murphy
KE, Morrow
JB, Cole
KD Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol. 2008;3(6):352–355.
+
Holder
AL, Lucas
D, Goth-Goldstein
R, Koshland
CP Cellular response to diesel exhaust particles strongly depends on the exposure method. Toxicol Sci. 2004;103(1):108–115.
+
Hoshino
A, Fujioka
K, Oku
T
et al Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters. 2004;4(11):2163–2169.
+
Hunter
DD, Undem
BJ Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med. 1999;159:1943–1948.
+
Hutchison
JE Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2008;2:395–402.
+
ICRP. Annals of the ICRP, Human Respiratory Tract Model for Radiological Protection. Vol. 24 (1–3). ICRP Publication 66, Pergamon; 1994.
+
Iezzi
R, Guru
B, Glybina
IV
et al Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33:979–988.
+
ISO/DIS 26824. Particle characterization of particulate systems—Vocabulary. ISO/TS; 2011.
+
ISO/TS 27687. Nanotechnologies—Terminology and Definitions for Nano-objects—Nanoparticle, Nanofibre and Nanoplate. ISO/TS; 2008.
+
Jacobsen
NR, Pojana
G, White
P
et al Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade mark-Mouse lung epithelial cells. Environ Mol Mutagen. 2008;49(6):476–487.
+
Jakubek
LM, Marangoudakis
S, Raingo
J, Liu
X, Lipscombe
D, Hurt
RH The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomaterials. 2009;30:6351–6357.
+
Jani
PU, Halbert
GW, Langridge
J, Florence
AT Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990;42:821–826.
+
Jani
PU, McCarthy
DE, Florence
AT Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm. 1994;105:157–168.
+
Jiang
J, Oberdörster
G, Biswas
P Characterization of size surface charge, and agglomeration state of nanoparticle disperisons for toxicological studies. J Nanopart Res. 2009;11:77–89.
+
Judy
JD, Unrine
JM, Bertsch
PM Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol. 2011;45(2):776–781. Epub 2010 Dec 3.
+
Johansen
A, Pedersen
AL, Jensen
KA
et al Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem. 2008;27(9):1895–1903.
+
Johnston
CJ, Finkelstein
JN, Mercer
P
et al Pulmonary effects induced by ultrafine PTFE particles. Toxicol Appl Pharmacol. 2000;168:208–215.
+
Johnston
HJ, Hutchison
GR, Christensen
FM
et al A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology. 2010a;4(2):207–246.
+
Johnston
HJ, Semmler-Behnke
M, Brown
DM, Kreyling
W, Tran
L, Stone
V Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol Appl Pharmacol. 2010b;242:66–78.
+
Jones
CF, Grainger
DW In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev. 2009;61(6):438–456.
+
Jovanović
B, Anastasova
L, Rowe
EW, Zhang
Y, Clapp
AR, Palić
D Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf. 2011;74(4):675–683.
+
Kagan
VE, Konduru
NV, Feng
W Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010;5:354–359.
+
Kagan
VE, Tyurina
YY, Tyurin
VA
et al Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett. 2006;165:88–100.
+
Kahru
A, Dubourguier
HC From ecotoxicology to nanoecotoxicology. Toxicology. 2010;269:105–119.
+
Kane
AB, Hurt
RH Nanotoxicology: the asbestos analogy revisited. Nat Nanotechnol. 2008;3(7):378–379.
+
Kang
B, Mackey
MA, El-Sayed
MA Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132(5):1517–1519.
+
Kang
S, Herzberg
M, Rodrigues
DF, Elimelech
M Antibacterial effects of carbon nanotubes: size does matter! Langmuir. 2008;24:6409–6413.
+
Kang
S, Pinault
M, Pfefferle
LD, Elimelech
M Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 2007;23:8670–8673.
+
Kang
S, Mauter
MS, Elimelech
M Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol. 2009;43(7):2648–2653.
+
Kanno
J, Takagi
A, Nishimura
T, Hirose
A Mesothelioma induction by micrometer-sized multi-walled carbon nanotube intraperitoneally injected to p53 heterozygous mice. Toxicologist. 2010;114:A1397.
+
Kanno
S, Furuyama
A, Hirano
S A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci. 2007;97:398–406.
+
Kao
YY, Chen
YC, Cheng
TJ, Chiung
YM, Liu
PS Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci. 2012;125(2):462–472.
+
Karmali
PP, Simberg
D Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv. 2011;8:343–357.
+
Kennedy
AJ, Hull
MS, Bednar
AJ
et al Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol. 2010;44(24):9571–9577.
+
Khandoga
A, Stoeger
T, Khandoga
AG
et al Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J Thromb Haemost. 2010;8:1632–1640.
+
Kim
BY, Rutka
JT, Chan
WC Nanomedicine. N Engl J Med. 2010;363:2434–2443.
+
Klaine
SJ, Alvarez
PJ, Batley
GE
et al Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27:1825–1851.
+
Klaper
R, Arndt
D, Setyowati
K, Chen
J, Goetz
F Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol. 2010;100(2):211–217.
+
Klaper
R, Crago
J, Barr
J, Arndt
D, Setyowati
K, Chen
J Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization. Environ Pollut. 2009;157(4):1152–1156.
+
Kobayashi
N, Naya
M, Ema
M
et al Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology. 2010;276(3):143–153.
+
Kolosnjaj-Tabi
J, Hartman
KB, Boudjemaa
S
et al In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 2010;4(3):1481–1492.
+
Kotchey
GP, Allen
BL, Vedala
H
et al The enzymatic oxidation of graphene oxide. ACS Nano. 2011;5:2098–2108.
+
Kovács
T Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev. 2004;3:215.
+
Kovochich
M, Espinasse
B, Auffan
M
et al Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol. 2009;43(16):6378–6384.
+
Kreuter
J Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J. Nanosci Nanotechnol. 2004;4:484–488.
+
Kreyling
W, Semmler
M, Erbe
F
et al Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002;65(20):1513–1530.
+
Kreyling
WG, Semmler-Behnke
M, Seitz
J
et al Size dependence of the translocation of the inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicol. 2009;21(S1):55–60.
+
Krug
HF, Wick
P Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed. 2011;50:1260–1278.
+
Kunzmann
A, Andersson
B, Thurnherr
T
et al Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta. 2011;1810:361–373.
+
Lacerda
L, Soundararajan
A, Singh
R
et al Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater. 2008;20:225–230.
+
Lai
SK, Wang
YY, Hanes
J Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61:158–171.
+
Lajoie
P, Nabi
IR Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol. 2010;282:135–163.
+
Lam
GW, James
JT, McCluskey
R, Hunter
RL Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:125–134.
+
Landsiedel
R, Ma-Hock
L, Kroll
A
et al Testing metal-oxide nanomaterials for human safety. Adv Mater. 2010;22:2601–2627.
+
Lee
KP, Seidel
WC Pulmonary response of rats exposed to polytetrafluoroethylene and tetrafluoroethylene hexafluoropropylene copolymer fume and isolated particles. Inhal Toxicol. 1991;3:237–264.
+
Lenz
AG, Karg
E, Lentner
B
et al A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol. 2009;6:32.
+
Lesniak
W, Bielinska
AU, Sun
K
et al Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 2005;5:2123–2130.
+
Letts
RE, Pereira
TC, Bogo
MR, Monserrat
JM Biologic responses of bacteria communities living at the mucus secretion of common carp (Cyprinus carpio) after exposure to the carbon nanomaterial fullerene (C60). Arch Environ Contam Toxicol. 2011;61(2):311–317.
+
Lewinski
NA, Zhu
H, Ouyang
CR
et al Trophic transfer of amphiphilic polymer coated CdSe/ZnS quantum dots to Danio rerio. Nanoscale. 2011;3(8):3080–3083.
+
Li
D, Alvarez
PJ Avoidance, weight loss, and cocoon production assessment for Eisenia fetida exposed to C60 in soil. Environ Toxicol Chem. 2011;30(11):2542–2545.
+
Li
JG, Li
QN, Xu
JY
et al The pulmonary toxicity of multi-wall carbon nanotubes in mice 30 and 60 days after inhalation exposure. J Nanosci Nanotechnol. 2009;9:1384–1387.
+
Li
JG, Li
WX, Xu
JY
et al Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol. 2007;22:415–421.
+
Li
M, Zhu
L, Lin
D Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol. 2011;45(5):1977–1983.
+
Li
N, Sioutas
C, Cho
A
et al Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–460.
+
Li
X, Fan
Y, Watari
F Current investigations into carbon nanotubes for biomedical application. Biomed Mater. 2010;5(2):22001.
+
Liang
F, Chen
B A review of biomedical applications of single-walled carbon nanotubes. Curr Med Chem. 2010;17:10–24.
+
Limbach
LK, Li
Y, Grass
RN
et al Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005;39:9370–9376.
+
Limbach
LK, Wick
P, Manser
P
et al Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol. 2007;41(11):4158–4163.
+
Linse
S, Cabaleiro-Lago
C, Xue
WF
et al Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A. 2007;104:8691–8696.
+
Liu
J, Hurt
RH Ion release kinetics and particle persistence in aqueous nano-silver colloids. Env Sci Tech. 2010;44:6:2169–2175.
+
Liu
J, Sonshine
D, Shervani
S, Hurt
RH Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010a; 4(11):6903–6913.
+
Liu
S, Ng
AK, Xu
R
et al Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale. 2010b;2:2744–2750.
+
Liu
S, Wei
L, Hao
L
et al Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano. 2009;3:3891–3902.
+
Liu
X, Guo
L, Morris
D, Kane
AB, Hurt
RH Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon. 2008;46:489–500.
+
Liu
X, Hurt
RH, Kane
AB Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon. 2010c;48:1961–1969.
+
Liu
Y, He
L, Mustapha
A, Li
H, Hu
ZQ, Lin
M Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 2009;107:1193–1201.
+
Liu
Z, Chen
K, Davis
C
et al Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008;68(16):6652–6660.
+
Liu
Z, Sun
X, Nakayama-Ratchford
N, Dai
H Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 2007;1:50–56.
+
Loeschner
K, Hadrup
N, Ovortrup
K
et al Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8:18.
+
Lovern
SB, Owen
H, Klaper
R Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology. 2008;2(1):43–48.
+
Lovern
SB, Strickler
JR, Klaper
R Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol. 2007; 41(12):4465–4470.
+
Lovern
S, Klaper
R Daphnia magna mortality when exposed to titanium dioxide and fullerene nanoparticles. Environ Toxicol Chem. 2006; 25(4):1132–1137.
+
Lu
CH, Zhu
CL, Li
J, Liu
JJ, Chen
X, Yang
HH Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun (Camb). 2010;46:3116–3118.
+
Lu
S, Duffin
R, Poland
C
et al Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect. 2009;117:241–247.
+
Lundqvist
M, Stigler
J, Elia
G
et al Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008;105(38):14265–14270.
+
Lynch
I, Cedervall
T, Lundqvist
M, Cabaleiro-Lago
C, Linse
S, Dawson
KA The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci. 2007;134–135:167–174.
+
Ma-Hock
L, Trenmann
S, Strauss
V
et al Inhalation toxicity of multi-wall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 2009; 112:468–481.
+
McNeil
SE Nanotechnology for the biologist. J Leukocyte Biol. 2005; 78:585–594.
+
Meng
H, Xia
T, George
S, Nel
AE A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano. 2009;3:1620–1627.
+
Mercer
RR, Hubbs
AF, Scabilloni
JF
et al Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Particle Fibre Toxicol. 2010;7:28.
+
Mercer
RR, Hubbs
AF, Scabilloni
JF
et al Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Particle Fibre Toxicol. 2011;8:21.
+
Mercer
RR, Scabilloni
J, Wang
L
et al Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol. 2008;294:L87–L97.
+
Mitchell
LA, Gao
J, Wal
RV
et al Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 2007;100(1):203–214.
+
Moberg
PJ, Doty
RL Olfactory function in Huntington’s disease patients and at-risk offspring. Int J Neurosci. 1997;89:133.
+
Monopoli
MP, Bombelli
FB, Dawson
KA Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol. 2011;6(1):11–12.
+
Monteiro-Riviere
NA, Inman
AO Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon. 2006;44:1070–1078.
+
Monteiro-Riviere
NA, Nemanich
RJ, Inman
AO, Wang
YY, Riviere
JE Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett. 2005;155(3):377–384.
+
Monteiro-Riviere
NA, Wiench
K, Landsiedel
R, Schulte
S, Inman
AO, Riviere
JE Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 2011;123:264–280.
+
Morimoto
Y, Hirohashi
M, Ogami
A
et al Pulmonary toxicity of well-dispersed multi-call carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology. 2012a;6(6):587–599.
+
Morimoto
Y, Hirohashi
M, Kobayashi
N
et al Pulmonary toxicity of well-dispersed multi-call carbon nanotubes after inhalation. Nanotoxicology. 2012b. In press.
+
Morrow
PE Possible mechanisms to explain dust overloading of the lungs. Fund Appl Tox. 1988;10:369–384.
+
Mortimer
M, Kasemets
K, Kahru
A Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology. 2010; 269(2–3):182–189.
+
Mouchet
F, Landois
P, Datsyuk
V
et al International amphibian micronucleus standardized procedure (ISO 21427-1) for in vivo evaluation of double-walled carbon nanotubes toxicity and genotoxicity in water. Environ Toxicol. 2011;26(2):136–145.
+
Mueller
NC, Nowack
B Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 2008;42:4447–4453.
+
Muller
J, Huaux
F, Moreau
N Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207:221–231.
+
Müller
RH, Heinemann
S In: Gurny R, Junginger HE, eds. Bioadhesion'Possibilities and Future trends. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1989:202–214.
+
Murphy
FA, Poland
CA, Duffin
R
et al Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol. 2011;178:2587–2600.
+
National Academy of Sciences. Risk assessment in the Federal Government: Managing the process. 1983.
+
National Nanotechnology Initiative. NNI Environmental, Health, and Safety Research Strategy. National Science and Technology Council Committee on Technology, Subcommittee on Nanoscale Science, Engineering and Technology; 2011.
+
Nel
A, Xia
T, Madler
L, Li
N Toxic potential of materials at the nanolevel. Science. 2006;311:622–627.
+
Nel
AE, Madler
L, Velegol
D
et al Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–557.
+
Nowack
B, Ranville
JF, Diamond
S
et al Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. 2012;31(1):50–59.
+
Nyberg
L, Turco
RF, Nies
L Assessing the impact of nanomaterials on anaerobic microbial communities. Environ Sci Technol. 2008; 42(6):1938–1943.
+
Oberdörster
G Dosimetric principles for extrapolating results of rat inhalation studies to humans, using nickel as an example. Health Phys. 1989;57(suppl 1):213–220.
+
Oberdörster
G, Elder
A, Rinderknecht
A Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol. 2009;9:4996–5007.
+
Oberdörster
G, Ferin
J, Gelein
R
et al Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect. 1992;97:193–197.
+
Oberdörster
G, Ferin
J Metal compounds used in new technologies: metal oxides of ultrafine particles have increased pulmonary toxicity. In: Merian E, Haerdi W, eds. Metal Compounds in Environment & Life. Northwood, UR: Science & Technology Ltrs. and Science Reviews, Inc; 1992:443–450.
+
Oberdörster
G, Ferin
J, Lehnert
BE Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102(suppl 5):173–179.
+
Oberdörster
G, Morrow
PE, Spurny
K Size dependent lymphatic short term clearance of amosite fi bers in the lung. Ann Occup Hyg. 1988;32 (suppl, inhaled particles VI):149–156.
+
Oberdörster
G, Oberdörster
E, Oberdörster
J Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–839.
+
Oberdörster
G, Oberdörster
E, Oberdörster
J Correspondence: concepts of nanoparticle dose metric and response metric. Environ Health Perspect. 2007a;115(6):A290.
+
Oberdörster
G, Stone
V, Donaldson
K Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 2007b;1(1):2–25.
+
Oberdörster
G, Sharp
Z, Atudorei
V
et al Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol. 2004;16(6–7):437–445.
+
Oh
YK, Swanson
JA Different fates of phagocytosed particles after delivery into macrophage lysosomes. J Cell Biol. 1996;132:585–593.
+
Oller
A, Oberdörster
G Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values. Regul Toxicol Pharmacol. 2010;57:181–194.
+
Oyabu
T, Myojo
T, Morimoto
Y
et al Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhal Toxicol. 2011; 23(13):784–791.
+
Pacurari
M, Yin
XJ, Ding
M
et al Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology. 2008;2(3):155–170.
+
Palomaki
J, Valimaki
E, Sund
J
et al Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 2011;5:6861–6870.
+
Pante
N, Kann
M Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell. 2002;13:425–434.
+
Pare
WP, Glavin
GB Restraint stress in biomedical research: a review. Neurosci Biobehav Rev. 1986;10:339–370.
+
Pauluhn
J Subchronic 13—week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structure. Toxicol Sci. 2010;113:226–242.
+
Peng
X, Palma
S, Fisher
NS, Wong
SS Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol. 2011; 102(3–4):186–196.
+
Petersen
EJ, Akkanen
J, Kukkonen
JVK, Weber
WJ
Jr Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol. 2009;43(8):2969–2975.
+
Pfaller
TR, Colognato
R, Nelissen
I
et al The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology. 2009:21. [epub ahead of print]
+
Phalen
RF, Oldham
MJ, Nel
AE Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol Sci. 2006;92(1):126–132.
+
Pietruska
JR, Liu
X, Smith
A
et al Bioavailability, intracellular mobilization of nickel, and HIF-1a activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci. 2011;124(1):138–148.
+
Poland
C, Duffin
R, Kinloch
I
et al Carbon nanotubes introduced into the abdominal cavity of ICR show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008:423–428.
+
Pope
CAI, Dockery
DW Health effects of fine particulate air polluton: lines that connect. J Air Waste Manage Assoc. 2006;56:709–742.
+
Porter
D, Sriram
I, Wolfarth
M
et al A biocompatible medium for nanoparticle dispersion. Nanotoxicology. 2008;2:144–154.
+
Porter
DW, Hubbs
AF, Mercer
RR
et al Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;269(2–3):136–147.
+
Pott
F, Ziem
U, Reiffer
F-J,
et al. Carcinogenicity studies on fibres, metal compounds and some other dusts in rats. Exp Pathol. 1987;32:129–152.
+
Pradhan
A, Seena
S, Pascoal
C, Cássio
F Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol. 2011;62(1):58–68.
+
Prow
TW, Grice
JE, Lin
LL
et al Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63(6):470–491.
+
Pulskamp
K, Krug
HF Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007;168(1):58–74.
+
Quinn
J, Geiger
C, Clausen
C
et al Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol. 2005; 39(5):1309–1318.
+
Ren
H, Wang
C, Zhang
J
et al DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano. 2010;4:7169–7174.
+
Rinderknecht
A, Elder
A, Prud’homme
R, Gindy
M, Harkema
J, Oberdörster
G Surface functionalization affects the role of nanoparticle disposition. Am J Respir Crit Care Med. 2007;175:A246.
+
Roberts
AP, Mount
AS, Seda
B
et al In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol. 2007;41(8):3025–3029.
+
Roco
MC Environmentally responsible development of nanotechnology. Environ Sci Technol. 2005;39:106A–112A.
+
Rodrigues
DF, Elimelech
M Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol. 2010;44:4583–4589.
+
Rosenthal
SJ, Chang
JC, Kovtun
O, McBride
JR, Tomlinson
ID Biocompatible quantum dots for biological applications. Chem Biol. 2011;18:10–24.
+
Ross
AJ, Dailey
LA, Brighton
LE, Devlin
RB Transcriptional Profiling of Mucociliary Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol. 2007;37:169–185.
+
Rothenberg
SJ, Parker
RM, York
RG
et al Lack of effects of nose-only inhalation exposure on testicular toxicity in male rats. Toxicol Sci. 2000;53:127–134.
+
Rushton
EK, Jiang
J, Leonard
SS
et al Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A. 2010;73(5):445–461.
+
Russell
DG, Vanderven
BC, Glennie
S, Mwandumba
H, Heyderman
RS The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol. 2009;9:594–600.
+
Ryman-Rasmussen
JP, Cesta
MF, Brody
AR
et al Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 2009a;4:747–751.
+
Ryman-Rasmussen
JP, Tewksbury
EW, Moss
OR
et al Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. 2009b;40(3):349–358.
+
Sager
TM, Porter
DW, Robinson
VA, Lindsley
WG, Schwegler-Berry
DE, Castranova
V Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicol. 2007;1:118–129.
+
Sakamoto
Y, Nakae
D, Fukumori
N
et al Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci. 2009;34(1):65–76.
+
Salas
EC, Sun
Z, Luttge
A, Tour
JM Reduction of graphene oxide via bacterial respiration. ACS Nano. 2010;4:4852–4856.
+
Sanchez
VC, Pietruska
JR, Miselis
NR, Hurt
RH, Kane
AB Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:511–529.
+
Sanchez
VC, Weston
P, Yan
A, Hurt
RH, Kane
AB A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part Fibre Toxicol. 2011;8(1):17.
+
Sargent
LM, Reynolds
SH, Castranova
V Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects. Nanotoxicology. 2010;4:396–408.
+
Sasidharan
A, Panchakarla
LS, Chandran
P
et al Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011;3:2461–2464.
+
Savi
M, Kalberer
M, Lang
D
et al A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environ Sci Technol. 2008;42(15):5667–5674.
+
Sayes
CM, Gobin
AM, Ausman
KD, Mendez
J, West
JL, Colvin
VL Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials. 2005;26:7587–7595.
+
Sayes
CM, Liang
F, Hudson
JL
et al Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett. 2006;161:135–142.
+
Schilling
K, Bradford
B, Castelli
D
et al Human safety review of “nano” titanium dioxide and zinc oxide. Photochemical & photobiological sciences. Photochem Photobiol Sci. 2010;9:495–509.
+
Schlesinger
RB, Lippmann
M Selective particle deposition and bronchogenic carcinoma. Environmental Res. 1978;15:424–431.
+
Schmid
G The relevance of shape and size of Au55 clusters. Chem Soc Rev. 2008;37:1909–1930.
+
Schneider
M, Stracke
F, Hansen
S, Schaefer
UF Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology. 2009;1(4):197–206.
+
Scown
TM, van Aerle
R, Tyler
CR Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol. 2010;40:653–670.
+
Segal
MB The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell and Mol Neurobiol. 2000;20:183.
+
Seidel
WC, Scherer
KV
Jr, Cline
D
Jr,
et al. Chemical, physical, and toxicological characterization of fumes produced by heating tetrafluoroethene homopolymer and its copolymers with hexafluoropropene and perfluoro(propyl vinyl ether). Chem Res Toxicol. 1991;4:229–236.
+
Semmler-Behnke
M, Takenaka
S, Feretsch
S
et al Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent re-entrainment onto airways epithelia. Environ Health Perspect. 2007;115(5):728–733.
+
Semmler
M, Seitz
J, Erbe
F
et al Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol. 2004;16(6/7):453–459.
+
Senzui
M, Tamura
T, Miura
K, Ikarashi
Y, Watanabe
Y, Fujii
M Study on penetration of titanium dioxide (TiO(2)) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci. 2010;35:107–113.
+
Seong
SY, Matzinger
P Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–478.
+
Serda
RE, Mack
A, van de Ven
AL,
et al. Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small. 2010;6:2691–2700.
+
Shaw
BJ, Handy
RD Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int. 2011; 37(6):1083–1097.
+
Shi
X, von dem Bussche
A, Hurt
RH, Kane
AB, Gao
H Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol. 2011;6:714–719.
+
Shinohara
H Distribution of lymphatic stomata on the pleural surface of the thoracic cavity and the surface topography of the pleural mesothelium in the golden hamster. Anat Rec. 1997;249:16–23.
+
Shvedova
AA, Kisin
ER, Mercer
R
et al Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol. Physiol. 2005;289:698–708.
+
Shvedova
AA, Kisin
E, Murray
AR
et al Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L552–L565.
+
Shvedova
AA, Sager
T, Murray
AR
et al Critical issues in the evaluation of possible adverse pulmonary effects from airborne nanoparticles. Nanotoxicology, Characterization, Dosing and Health Effects. New York, London: Informa Healthcare, USA Inc; 2007.
+
Silbergeld
EK, Contreras
EQ, Hartung
T
et al Nanotoxicology: “the end of the beginning”—signs on the roadmap to a strategy for assuring the safe application and use of nanomaterials. Altex. 2011;28:236–241.
+
Simmons
SO, Fan
CY, Ramabhadran
R Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci. 2009;111:202–225.
+
Singh
R, Pantarotto
D, Lacerda
L
et al Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006;103(9):3357–3362.
+
Sistonen
L, Sarge
KD, Phillips
B
et al Mol Cell Biol. 1992;12:4104–4111.
+
Slikker
W
Jr, Andersen
ME, Bogdanffy
MS
et al Dose-dependent transitions in mechanisms of toxicity. Toxicol Appl Pharmacol. 2004; 201(3):203–225.
+
Slowing
II, Vivero-Escoto
JL, Zhao
Y
et al Exocytosis of mesoporous silica nanoparticles from mammalian cells: from asymmetric cell-to-cell transfer to protein harvesting. Small. 2011;7:1526–1532.
+
Stanton
MF, Layard
M, Tegeris
A
et al Relation of particle dimension to carcinogenicity in Amphibole asbestoses and other fibrous minerals. JNCL. 1981;67:965–975.
+
Stone
V, Johnston
H, Schins
RP Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39:613–626.
+
Sugamata
M, Uhara
T, Takano
H, Oshio
S, Takeda
K Maternal diesel exhaust exposure damages newborn murine brains. J Health Science. 2006;52(1):82–84.
+
Takagi
A, Hirose
A, Nishimura
T
et al Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 2008;33(1):105–116.
+
Takeda
K, Suzuki
K-i, Ishihra
A
et al Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci. 2009;55(1):95–102.
+
Tang
T, Gminski
R, Könczöl
M, Modest
C, Armbruster
B, Mersch-Sundermann
V Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system. Environ Mol Mutagen. 2011.
+
Taurozzi
JS, Hackley
VA, Wiesner
MR Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment—issues and recommendations. Nanotoxicology. 2011;5:711–729.
+
Teeguarden
JG, Hinderliter
PM, Orr
G, Thrall
BD, Pounds
JG Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 2007;95(2):300–312.
+
Teleki
A, Wengeler
R, Wengeler
L, Nirschl
H, Pratsinis
SE Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol. 2008;181:292–300.
+
Titov
AV, Kral
P, Pearson
R Sandwiched graphene—membrane superstructures. ACS Nano. 2010;4:229–234.
+
Tong
Z, Bischoff
M, Nies
L, Applegate
B, Turco
RF Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol. 2007; 41(8):2985–2991.
+
Tran
CL, Buchanan
D, Cullen
RT, Searl
A, Jones
AD, Donaldson
K Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113–1126.
+
Tran
TH, Nguyen
TD Controlled growth of uniform noble metal nanocrystals: aqueous-based synthesis and some applications in biomedicine. Colloids Surf B, Biointerfaces. 2011;88:1–22.
+
Trouiller
B, Reliene
R, Westbrook
A, Solaimani
P, Schiestl
RH Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009;69(22):8784–8789.
+
Truong
L, Saili
KS, Miller
JM, Hutchison
JE, Tanguay
RL Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol. 2012;155(2):269–274.
+
Tu
X, Manohar
S, Jagota
A, Zheng
M DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature. 2009;460:250–253.
+
Tungittiplakorn
W, Cohen
C, Lion
LW Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol. 2005;39(5):1354–1358.
+
Udelsman
R, Blake
MJ, Stagg
CA
et al Vascular heat shock protein expression in response to stress. J Clin Invest. 1993;91:465–473.
+
Unfried
K, Albrecht
C
et al Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology. 2007;1:52–71.
+
Vallhov
H, Qin
J, Johansson
SM
et al The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 2006;6:1682–1686.
+
Vankoningsloo
S, Piret
J-P, Saout
C
et al Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicology. 2010;4(1):84–97.
+
Vecchio
G, Galeone
A, Brunetti
V
et al Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine. 2012;8(1):1–7.
+
Velzeboer
I, Kupryianchyk
D, Peeters
ET, Koelmans
AA Community effects of carbon nanotubes in aquatic sediments. Environ Int. 2011; 37(6):1126–1130.
+
Volckens
J, Dailey
L, Walters
G, Devlin
RB Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. Environ Sci Technol. 2009;43(12):4595–4599.
+
Walczyk
D, Bombelli
FB, Monopoli
MP
et al What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132:5761–5768.
+
Walker
NJ, Bucher
JR A 21st century paradigm for evaluating the health hazards of nanoscale materials? Toxicol Sci. 2009;110:251–254.
+
Wang
C, Hou
Y, Kim
J, Sun
S A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed Engl. 2007;46:6333–6335.
+
Wang
J, Chen
C, Liu
Y
et al Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett. 2008a;183(1–3):72–80.
+
Wang
J, Liu
Y, Jiao
F
et al Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology. 2008b;254(1–2):82–90.
+
Wang
NS The preformed stomatas connecting the pleural cavity and the lymphatics in the parietal pleura. Amer Rev Resp Dis. 1975;111:12–20.
+
Wang
SQ, Tooley
IR Photoprotection in the era of nanotechnology. Semin Cutan Med Surg. 2011;30:210–213.
+
Wang
X, Xia
T, Ntim
SA
et al Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 2011a;5:9772–9787.
+
Wang
YY, Lai
SK, So
C, Schneider
C, Cone
R, Hanes
J Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PloS One. 2011b;6:e21547.
+
Wang
Y, Westerhoff
P, Hristovski
KD Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J Hazard Mater. 2012;201–202:16–22. Epub 2011 Nov 7. PubMed PMID:
[PubMed: 22154869]
.
+
Warheit
DB How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci. 2008;101:183–185.
+
Warheit
DB, Hartsky
MA, Stefaniak
MS Comparative physiology of rodent pulmonary macrophages: in vitro functional responses. J Appl Physiol. 1988a;64(5):1953–1959.
+
Warheit
DB, Laurence
BR, Reed
KL, Rouch
DH, Reynolds
GAM, Webb
TR Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117–125.
+
Warheit
DB, Overby
LH, George
G, Brody
AR Pulmonary macrophages are attracted to inhaled particles on alveolar surfaces. Exp Lung Res. 1988b;14:51–66.
+
Weir
A, Westerhoff
P, Fabricius
L, Hristovski
K, von Goetz
N Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46(4):2242–2250.
+
Werlin
R, Priester
JH, Mielke
RE
et al Biomagnification of cadmium selenide quantumdots in a simple experimental microbial food chain. Nat Nanotechnol. 2011;6(1):65–71.
+
Westerhoff
P, Song
G, Hristovski
K, Kiser
MA Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit. 2011;13:1195–1203.
+
Weuve
J, Puett
RC, Schwartz
J
et al Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012;172(3):219–227.
+
Wick
P, Manser
P, Limbach
LK
et al The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007;168:121–131.
+
Worle-Knirsch
JM, Pulskamp
K, Krug
HF Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6(6):1261–1268.
+
Xia
T, Kovochich
M, Brant
J
et al Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–1807.
+
Xia
T, Kovochich
M, Liong
M
et al Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008a;2:2121–2134.
+
Xia
T, Kovochich
M, Liong
M, Zink
JI, Nel
AE Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano. 2008b;2:85–96.
+
Xia
T, Zhao
Y, Sager
T
et al Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano. 2011;5:1223–1235.
+
Xia
XR, Monteiro-Riviere
NA, Riviere
JE An index for characterization of nanomaterials in biological systems. Nat Nanotechnol. 2010;5:671–675.
+
Xie
Y, Williams
NG, Tolic
A
et al Aerosolized ZnO nanoparticles induce toxicity in alveolar type ii epithelial cells at the air-liquid interface. Toxicol Sci. 2012;125(2):450–461.
+
Xiong
D, Fang
T, Yu
L, Sima
X, Zhu
W Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ. 2011;409(8):1444–1452.
+
Xu
C, Xie
J, Ho
D
et al Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Ed Engl. 2008;47:173–176.
+
Yan
A, Von Dem Bussche
A, Kane
AB, Hurt
RH Tocopheryl polyethylene glycol succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon. 2007;45:2463–2470.
+
Yan
L, Zhao
F, Li
S, Hu
Z, Zhao
Y Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale. 2011;3:362–382.
+
Yang
K, Zhu
L, Xing
B Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol. 2006;40:1855–1861.
+
Yang
Z, Zhang
Y, Yang
Y
et al Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427–441.
+
Yu
LP, Fang
T, Xiong
DW, Zhu
WT, Sima
XF Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, •OH production and particle dissolution in distilled water. J Environ Monit. 2011;13(7):1975–1982.
+
Zhang
LW, Monteiro-Riviere
NA Lectins modulate multi-walled carbon nanotubes cellular uptake in human epidermal keratinocytes. Toxicol In Vitro. 2010;24:546–551.
+
Zhang
Q, Huang
JQ, Zhao
MQ, Qian
WZ, Wei
F Carbon nanotube mass production: principles and processes. ChemSusChem. 2011;4:864–889.
+
Zhang
QZ, Zha
L-S, Zhang
Y
et al The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target. 2006; 14(5):281–290.
+
Zhao
F, Zhao
Y, Liu
Y, Chang
X, Chen
C, Zhao
Y Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011; 7:1322–1337.
+
Zhao
Y, Allen
BL, Star
A Enzymatic degradation of multiwalled carbon nanotubes. J Phys Chem A. 2011;115:9536–9544.
+
Zhu
S, Haasch
ML Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res. 2006;62(suppl):S5–S9.
+
Zhu
X, Zhu
L, Lang
Y, Chen
Y Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ Toxicol Chem. 2008;27(9):1979–1985.