RT Book, Section A1 Craig, Gedye A2 Tannock, Ian F. A2 Hill, Richard P. A2 Bristow, Robert G. A2 Harrington, Lea SR Print(0) ID 1127472689 T1 Heterogeneity in Cancer: The "Cancer Stem Cell" Hypothesis T2 The Basic Science of Oncology, 5e YR 2016 FD 2016 PB McGraw-Hill Education Medical PP New York, NY SN 9780071745208 LK accessbiomedicalscience.mhmedical.com/content.aspx?aid=1127472689 RD 2024/04/25 AB Every patient's cancer is different. Cancers arising from the same organ have different histology and metastatic proclivity, are more or less aggressive, and have different responses to therapy. There are many interdependent mechanisms and dimensions of heterogeneity that account for this variability between cancers. There is also heterogeneity within individual cancers, between stromal cells with a normal genome and mutated malignant cells, between differently mutated malignant clones, between epigenetically different subpopulations within clonal populations, and between cells within different microenvironments within the tumor (Fig. 13–1; see Chap. 12, Sec. 12.2). Recognition of this heterogeneity gives rise to the intriguing possibility that a subset of cancer cells are resistant to treatment, may cause primary tumor recurrence or seed distant metastasis, and may be identifiable a priori. A surgeon's concern in ensuring complete resection of primary tumors ("negative margins") where more invasive cancer cells may reside, the prognostic relevance of circulating tumor cells (see Chap. 10, Sec. 10.3.4), and the resistance of disseminated micrometastases to adjuvant chemotherapy are phenomena that might be explained by "special" cells within a cancer, so-called cancer stem cells, cells that must be targeted to achieve long-term remission or cure. The cancer stem cell (CSC) hypothesis states that only a minority of cancer cells has the potential to (a) self-renew, (b) proliferate indefinitely, and (c) differentiate to give rise to more differentiated tumor cells (Reya et al, 2001). This chapter addresses the competing models that attempt to account for this epigenetic heterogeneity, led by the CSC hypothesis, but first describes the stromal and genetic heterogeneity of human cancers.